Ideal versions of wQN-space and QN-space

Jaroslav Šupina joint research with L. Bukovský and P. Das

Institute of Mathematics Faculty of Science P.J. Šafárik University in Košice

 29^{th} of January 2014

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

A family $\mathcal{I} \subseteq \mathcal{P}(\omega)$ is called an ideal if

$$\begin{split} \text{a)} \quad & B \in \mathcal{I} \text{ for any } B \subseteq A \in \mathcal{I}, \\ \text{b)} \quad & A \cup B \in \mathcal{I} \text{ for any } A, B \in \mathcal{I}, \\ \text{c)} \quad & \text{Fin} = [\omega]^{<\omega} \subseteq \mathcal{I}, \\ \text{d)} \quad & \omega \notin \mathcal{I}. \end{split}$$

\mathcal{I}, \mathcal{J} are ideals in the following.

$$\mathcal{A} \subseteq \mathcal{P}(\omega) \qquad \qquad \mathcal{A}^d = \{ A \subseteq \omega; \ \omega \setminus A \in \mathcal{A} \}$$

A family $\mathcal{F} \subseteq \mathcal{P}(\omega)$ is called a filter if \mathcal{F}^d is ideal.

Convergence of reals $\langle x_n : n \in \omega \rangle$

H. Cartan [1937]

$$x' = \lim_{\mathbf{F}} f$$
 if $f^{-1}(\mathbf{V}(x')) \subseteq \mathbf{F}$

$$f: \omega \to \mathbb{R}$$
 $f(n) = x_n, n \in \omega$

$$x_n \xrightarrow{\mathcal{I}} x \quad \equiv \quad (\forall \varepsilon > 0) (\exists A \in \mathcal{I}) (\forall n \in \omega) (n \not\in A \to |x_n - x| < \varepsilon)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

All functions are assumed to be real-valued.

\mathcal{I} -convergence of $\langle f_n : n \in \omega \rangle$, $f_n, f : X \to \mathbb{R}$

M. Katětov [1968], ..., P. Kostyrko, T. Šalát and W. Wilczyński [2000]

 \mathcal{I} -pointwise convergence $f_n \xrightarrow{\mathcal{I}} f$

 $(\forall x \in X)(\forall \varepsilon > 0)(\exists A \in \mathcal{I})(\forall n \in \omega)(n \notin A \to |f_n(x) - f(x)| < \varepsilon)$

P. Das and D. Chandra [2013]

 \mathcal{I} -quasinormal convergence $f_n \xrightarrow{\mathcal{I}QN} f$ there exists $\langle \varepsilon_n : n \in \omega \rangle \mathcal{I}$ -converging to 0 such that

$$(\forall x \in X)(\exists A \in \mathcal{I})(\forall n \in \omega)(n \notin A \to |f_n(x) - f(x)| < \varepsilon_n)$$

M. Balcerzak, K. Dems and A. Komisarski [2007]

 \mathcal{I} -uniform convergence

$$f_n \xrightarrow{\mathcal{I}} f$$

$$(\forall \varepsilon > 0)(\exists A \in \mathcal{I})(\forall x \in X)(\forall n \in \omega)(n \not\in A \to |f_n(x) - f(x)| < \varepsilon)$$

Á Császár and M. Laczkovich [1979], Z. Bukovská [1991]

Let $f_n, f, n \in \omega$ be functions on X. The following conditions are equivalent.

(i)
$$f_n \xrightarrow{\text{QN}} f \text{ on } X$$
.

(ii) There are sets $X_k \subseteq X$ such that $X = \bigcup_{k=0}^{\infty} X_k$ and $f_n \rightrightarrows f$ on X_k for every $k \in \omega$.

(iii) There are sets $X_k \subseteq X$ such that $X = \bigcup_{k=0}^{\infty} X_k, X_k \subseteq X_{k+1}, k \in \omega$ and $f_n \rightrightarrows f$ on X_k for every $k \in \omega$.

Moreover, if X is a topological space and $f_n, n \in \omega$ are continuous, then (i), (ii) and (iii) are equivalent to

(iv) There are closed sets $X_k \subseteq X$ such that $X = \bigcup_{k=0}^{\infty} X_k, X_k \subseteq X_{k+1}, k \in \omega$ and $f_n \Rightarrow f$ on X_k for every $k \in \omega$.

 $\mathcal{B} \subseteq \mathcal{I}$ is a base of \mathcal{I} if for any $A \in \mathcal{I}$ there is $B \in \mathcal{B}$ such that $A \subseteq B$.

$$\operatorname{cof}(\mathcal{I}) = \min\{|\mathcal{A}|; \ \mathcal{A} \subseteq \mathcal{I} \land \mathcal{A} \text{ is a base of } \mathcal{I}\}$$

Theorem

The following are equivalent:

- a) $\operatorname{cof}(\mathcal{I}) = \kappa$.
- b) For any set *X* and for any sequence, if $f_n \xrightarrow{\mathcal{IQN}} f$ on *X* there are $X_{\xi}, \xi < \kappa$ such that $X = \bigcup_{\xi < \kappa} X_{\xi}$ and $f_n \xrightarrow{\mathcal{I}-\mathbf{u}} f$ on each X_{ξ} . Moreover, if *X* is a topological space and $f_n, n \in \omega$ are continuous, then the sets X_{ξ} can be chosen to be closed.
- **R.** Filipów and M. Staniszewski [2013] $\kappa = \aleph_0$

P. Das and D. Chandra [2013]

Let $f_n, f, n \in \omega$ be functions on X. If there are $X_k \subseteq X, k \in \omega$ such that $f_n \xrightarrow{\mathcal{I}-\mathbf{u}} f$ on each X_k then $f_n \xrightarrow{\mathcal{I}Q\mathbf{N}} f$ on $\bigcup_{k \in \omega} X_k$.

All spaces are assumed to be Hausdorff and infinite.

L. Bukovský, I. Recław and M. Repický [1991]

A topological space X is a QN-space (a wQN-space) if each sequence of continuous real-valued functions converging to zero on X is (has a subsequence) converging quasi-normally.

P. Das and D. Chandra [2013]

A topological space X is an $\mathcal{I}QN$ -space (an $\mathcal{I}wQN$ -space) if each sequence of continuous functions converging to zero on X is (has a subsequence) converging \mathcal{I} -quasinormally (with respect to its enumeration).

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Ideals with a pseudounion

A set $B \subseteq \omega$ is called a pseudounion of the family $\mathcal{A} \subseteq \mathcal{P}(\omega)$ if $\omega \setminus B$ is infinite and $A \subseteq^* B$ for any $A \in \mathcal{A}$.

Thus an ideal ${\cal I}$ is a P-ideal if and only if every countable subfamily of ${\cal I}$ has a pseudounion belonging to ${\cal I}.$

If a pseudounion A of \mathcal{I} belongs to \mathcal{I} then $\mathcal{I} = \{B \subseteq \omega; B \subseteq^* A\}.$

An ideal ${\mathcal I}$ has a pseudounion if and only if ${\mathcal I}$ is not tall.

If $cof(\mathcal{I}) < \mathfrak{p}$ then \mathcal{I} has a pseudounion.

 $\emptyset \times \text{Fin}$ has a pseudounion and $\operatorname{cof}(\emptyset \times \text{Fin}) = \mathfrak{d}$.

 $\emptyset \times \operatorname{Fin} = \{ A \subseteq \omega \times \omega; \ (\forall n \in \omega) \ \{m; \ (n, m) \in A\} \in \operatorname{Fin} \}$

A D F A 同 F A E F A E F A Q A

Ideals with a pseudounion

The *n*-th element of $A \subseteq \omega$ is denoted $e_A(n)$.

Proposition

Let *C* be a pseudounion of an ideal \mathcal{I} , $A = \omega \setminus C$. Then

- a) For any sequence $\langle f_n : n \in \omega \rangle$ of real-valued functions on X, if $f_n \xrightarrow{\mathcal{I}} f$ then $f_{e_A(n)} \to f$.
- b) For any sequence $\langle f_n : n \in \omega \rangle$ of real-valued functions on X, if $f_n \xrightarrow{IQN} f$ then $f_{e_A(n)} \xrightarrow{QN} f$.

Corollary

Let $\mathcal{I} \subseteq \mathcal{P}(\omega)$ be an ideal with a pseudounion. Then

- a) Any topological space X is an $\mathcal{I}QN$ -space if and only if X is a QN-space.
- b) Any topological space X is an IwQN-space if and only if X is a wQN-space.

Non-increasing control

P. Kostyrko, T. Šalát and W. Wilczyński [2000]

The following are equivalent.

- (i) \mathcal{I} is a P-ideal.
- (ii) For every sequence of reals $\{x_n\}_{n=0}^{\infty}$, if $x_n \xrightarrow{\mathcal{I}} x$ then there is $A \in \mathcal{I}^d$ such that $x_{e_A(n)} \to x$.

R. Filipów and M. Staniszewski [2013]

The following are equivalent.

- (i) \mathcal{I} is a P-ideal.
- (ii) For every sequence of functions $\langle f_n : n \in \omega \rangle$ on a set X, if $f_n \xrightarrow{\mathcal{IQN}} f$ then there is a sequence of reals $\{\varepsilon_n\}_{n=0}^{\infty}$ converging to zero such that $f_n \xrightarrow{\mathcal{IQN}} f$ with the control $\{\varepsilon_n\}_{n=0}^{\infty}$.

P. Das and D. Chandra [2013]

Let \mathcal{I} be a P-ideal, $X = \bigcup_{s \in S} X_s, |S| < \mathfrak{b}.$

If
$$f_n \xrightarrow{\mathcal{I}QN} f$$
 on each X_s then $f_n \xrightarrow{\mathcal{I}QN} f$ on X .

 $\label{eq:constraint} \text{If } \mathcal{I} \text{ is a P-ideal then} \qquad \operatorname{add}(\mathcal{I}QN\text{-space}) \geq \mathfrak{b}.$

 $\mathsf{add}(\mathcal{I}\mathsf{QN}\mathsf{-space}) = \min\{|\mathcal{A}|; \ (\forall A \in \mathcal{A}) \ ``A \text{ is an } \mathcal{I}\mathsf{QN}\mathsf{-space}" \land ``\bigcup \mathcal{A} \text{ is p.n. non-} \mathcal{I}\mathsf{QN}\mathsf{-space}"\} p.n.=perfectly normal$

Archangel'skii's property (α_1)

A.V. Arkhangel'skiĭ [1972]

A topological space Y is (α_1) -space if for any $\langle S_n : n \in \omega \rangle$ of sequences converging to some point $y \in Y$, there exists a sequence S converging to y such that $S_n \subseteq^* S$ for all $n \in \omega$.

A topological space Y is (α_1) -space if and only if for any sequence $\{\{x_{n,m}\}_{m=0}^{\infty}\}_{n=0}^{\infty}$ of sequences converging to some point $y \in Y$, there exists an increasing sequence $\{m_n\}_{n=0}^{\infty}$ such that $\{x_{n,m}; m \ge m_n, n \in \omega\}$ converges to y.

M. Scheepers [1998], L. Bukovský and J. Haleš [2007], M. Sakai [2007]

 $C_p(X)$ satisfies (α_1) if and only if X is a QN-space.

A D F A 同 F A E F A E F A Q A

For any continuous functions $f_{n,m}: X \to \mathbb{R}$ if $f_{n,m} \to 0$ for any $n \in \omega$ then there is a sequence $\langle B_n : n \in \omega \rangle$ of sets from \mathcal{I} such that

 $(\forall \varepsilon > 0)(\forall x \in X)(\exists A \in \mathcal{I})(\forall n \in \omega)(m \notin A \cup B_n \to |f_{n,m}(x)| < \varepsilon).$

Theorem

X satisfies $(\mathcal{I}$ - $\alpha_1)$ if and only if *X* is an $\mathcal{I}QN$ -space.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$(\mathcal{I} - \alpha_1)$

For any continuous functions $f_{n,m}: X \to \mathbb{R}$ if $f_{n,m} \to 0$ for any $n \in \omega$ then there is a sequence $\langle B_n : n \in \omega \rangle$ of sets from \mathcal{I} such that

 $(\forall \varepsilon > 0)(\forall x \in X)(\exists A \in \mathcal{I})(\forall n \in \omega)(m \notin A \cup B_n \to |f_{n,m}(x)| < \varepsilon).$

If $C_p(X)$ satisfies $(\mathcal{I} - \alpha_1)$ then X is an $\mathcal{I}QN$ -space.

1.
$$f_m \to 0$$
 $f_{n,m} = 2^n |f_m|$ $f_{n,m} \to 0, n \in \omega$,

2.
$$\langle B_n : n \in \omega \rangle, B_n \subseteq B_{n+1}, \bigcup_{n=0}^{\infty} B_n = \omega, B_{-1} = \emptyset$$

3.
$$m \in B_n \setminus B_{n-1}$$
 $\varepsilon_m = 2^{-n}$,

4.
$$\{m; \ \varepsilon_m \ge 2^{-n}\} = B_n \qquad \varepsilon_m \xrightarrow{\mathcal{I}} 0,$$

5.
$$m \notin B_0$$
 $m \in B_n \setminus B_{n-1}$ $\varepsilon_m = 2^{-n}$

6. $x \in X, \varepsilon = 1$ $m \notin A \cup B_n$ $|f_m(x)| < \varepsilon_m$.

・ロト・雪・・雪・・雪・・ 白・ 今々ぐ

 $(\mathcal{I} \textbf{-} \alpha_1)$

For any continuous functions $f_{n,m}: X \to \mathbb{R}$ if $f_{n,m} \to 0$ for any $n \in \omega$ then there is a sequence $\langle B_n : n \in \omega \rangle$ of sets from \mathcal{I} such that

$$(\forall \varepsilon > 0)(\forall x \in X)(\exists A \in \mathcal{I})(\forall n \in \omega)(m \notin A \cup B_n \to |f_{n,m}(x)| < \varepsilon).$$

If X is an $\mathcal{I}QN$ -space then $C_p(X)$ satisfies $(\mathcal{I}-\alpha_1)$.

1.
$$f_{n,m} \to 0, n \in \omega$$
 $g_m = \sum_{n=0}^{\infty} \min\{2^{-n}, |f_{n,m}|\}$ $g_m \to 0, g_m$ continuous,

2.
$$g_m \xrightarrow{\mathcal{I}QN} 0$$
 with the control $\varepsilon_m \xrightarrow{\mathcal{I}} 0$,

•
$$x \in X$$
 $A_x \in \mathcal{I}$ $m \notin A_x \to g_m(x) < \varepsilon_m$,
• $\langle B_n : n \in \omega \rangle$ $m \notin B_n \to \varepsilon_m < 2^{-n}$,

3. $m \notin A_x \cup B_n$ $g_m(x) < 2^{-n}$ $|f_{n,m}(x)| < 2^{-n}$,

 $\text{ 4. } x \in X, \varepsilon > 0, k_0: 2^{-k_0} < \varepsilon, m_0 \qquad (\forall k < k_0) (\forall m > m_0) \; |f_{k,m}(x)| < \varepsilon.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

L. Bukovský and J. Haleš [2007] $(\alpha_0), (\alpha_0^*)$

 $\begin{array}{c} \textbf{(\mathcal{I}-\alpha_0)} \\ \hline \\ \text{any } n \in \omega \text{ there is a sequence } \{n_m\}_{m=0}^{\infty} \mathcal{I}\text{-divergent to } \infty \text{ such that } f_{n,m} \xrightarrow{\mathcal{I}} f. \end{array}$

 $\underbrace{(\mathcal{I} - \alpha_0^*)}_{\text{for any } n \in \omega \text{ and } f_n \to f \text{ there is a sequence } \{n_m\}_{m=0}^{\infty} \text{ such that } f_{n,m} \to f_n$

Theorem

X satisfies $(\mathcal{I} - \alpha_0) \equiv X$ satisfies $(\mathcal{I} - \alpha_0^*) \equiv X$ is an $\mathcal{I}QN$ -space

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Coverings, two parameters

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

L. Bukovský and J. Haleš [2007], M. Sakai [2007] $\alpha_1(\Gamma, \Gamma), \beta_1, \beta_2, \beta_3, \beta_1^*, \beta_2^*$

A γ -cover $\langle U_n : n \in \omega \rangle$ is fully shrinkable if there is a closed γ -cover $\langle F_n : n \in \omega \rangle$ such that $F_n \subseteq U_n$ for each $n \in \omega$.

M. Sakai [2007]

Every open γ -cover $\langle U_n : n \in \omega \rangle$ of a perfectly normal space X is fully shrinkable if and only if X is a σ -set.

P. Das [2013]

A cover $\langle U_n : n \in \omega \rangle$ of X is an \mathcal{I} - γ -cover if $\{n \in \omega; x \notin U_n\} \in \mathcal{I}$ for each $x \in X$.

 \mathcal{I} - Γ

An infinite cover A of X is a γ -cover if every $x \in X$ lies in all but finitely many members of A. (J. Gerlits and Zs. Nagy [1982]) Γ

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A topological space X is a σ -set if every F_{σ} subset of X is a G_{δ} set in X.

Theorem

The following are equivalent.

- (i) X is an IQN-space.
- (ii) For every sequence ({U_{n,m}; m ∈ ω} : n ∈ ω) of fully shrinkable open γ-covers there is a sequence {n_m}[∞]_{m=0} *I*-divergent to ∞ such that {U_{n_m,m}; m ∈ ω} is an *I*-γ-cover of *X*.
- (iii) For every sequence $\langle \{U_{n,m}; m \in \omega\} : n \in \omega \rangle$ of fully shrinkable open γ -covers there is a sequence $\langle B_n : n \in \omega \rangle$ of sets from \mathcal{I} such that

 $(\forall x \in X) (\exists A \in \mathcal{I}) (\forall n \in \omega) (m \notin A \cup B_n \to x \in U_{n,m}).$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Proposition

Let $\mathcal{I} \subseteq \mathcal{P}(\omega)$ be an ideal with a pseudounion C, $A = \omega \setminus C$. Then for any \mathcal{I} - γ -cover $\langle U_n : n \in \omega \rangle$, the sequence $\langle U_{e_A(n)} : n \in \omega \rangle$ is a γ -cover.

Corollary

Let $\mathcal{I}, \mathcal{J} \subseteq \mathcal{P}(\omega)$ be ideals with pseudounions. Then any topological space X is an $S_1(\mathcal{I}$ - Γ, \mathcal{J} - $\Gamma)$ -space if and only if X is an $S_1(\Gamma, \Gamma)$ -space.

Let \mathcal{A} , \mathcal{B} be families of covers of X. A topological space X possesses the property $S_1(\mathcal{A}, \mathcal{B})$ if for every sequence $\langle \mathcal{U}_n : n \in \omega \rangle$ of covers from \mathcal{A} there exist sets $U_n \in \mathcal{U}_n, n \in \omega$ such that $\{U_n; n \in \omega\} \in \mathcal{B}$. (M. Scheepers [1996])

P. Das and D. Chandra [2014]

A topological space X is an $(\mathcal{I},\mathcal{J})$ wQN-space if each sequence of continuous functions \mathcal{I} -converging to zero on X has a subsequence converging \mathcal{J} -quasinormally (with respect to its enumeration).

Corollary

Let $\mathcal{I}, \mathcal{J} \subseteq \mathcal{P}(\omega)$ be ideals with pseudounions. Then any topological space X is an $(\mathcal{I}, \mathcal{J})$ wQN-space if and only if X is a wQN-space.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Proposition Any γ -set is an $S_1(\mathcal{I}$ - $\Gamma, \Gamma)$ -space.

Proposition

If X is an $S_1(\mathcal{I}-\Gamma,\Gamma)$ -space then X is an (\mathcal{I},Fin) wQN-space.

Corollary

Any γ -set is an $S_1(\mathcal{I}-\Gamma, \mathcal{J}-\Gamma)$ -space and an $(\mathcal{I}, \mathcal{J})$ wQN-space.

A cover A of X is an ω -cover if for any finite subset F of X there is $A \in A$ such that $F \subseteq A$. (J. Gerlits and Zs. Nagy [1982])

A topological space X is a γ -set if any open ω -cover of X contains γ -subcover. (J. Gerlits and Zs. Nagy [1982])

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

References

Архангельский А.В. (Arkhangel'skiї А.V.), Спектр частот топологического
пространства и классификация пространств, ДАН СССР, 206 :2 (1972), 265–268. English translation <i>The frequency spectrum of a topological space and the classification of spaces</i> , Soviet Math. Dokl. 13 (1972), 1185–1189.
Balcerzak M., Dems K. and Komisarski A., <i>Statistical convergence and ideal convergence for sequences of functions</i> , J. Math. Anal. Appl. 328 (2007), 715–729.
Bukovská Z., Quasinormal convergence, Math. Slovaca 41 (1991), 137-146.
Bukovský L. and Haleš J., QN-spaces, wQN-spaces and covering properties, Topology Appl. 154 (2007), 848–858.
Bukovský L., Reclaw I. and Repický M., Spaces not distinguishing pointwise and quasinormal convergence of real functions, Topology Appl. 41 (1991), 25–40.
Cartan H., Théorie des filtres, C. R. Acad. Sci. Paris 205 (1937), 595–598.
Cartan H., Filtres et ultrafiltres, C. R. Acad. Sci. Paris 205 (1937), 777-779.
Császár Á. and Laczkovich M., Some remarks on discrete Baire classes, Acta Math. Acad. Sci. Hungar. 33 (1979), 51–70.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

- Das P. and Chandra D., Spaces not distinguishing pointwise and *I*-quasinormal convergence of real functions, Comment. Math. Univ. Carolin. **54** (2013), 83–96.

Das P. and Chandra D., $(\mathcal{I}, \mathcal{J})$ -quasinormal spaces, manuscript.

Das P., Certain types of open covers and selection principles using ideals, Houston J. Math. **39** (2013), 637–650.

- Gerlits J. and Nagy Zs., Some properties of C(X), I, Topology Appl. 14 (1982), 151–161.
- Katětov M., Products of filters, Comment. Math. Univ. Carolin. 9 (1968), 173–189.
- Kostyrko P., Šalát T. and Wilczyński W., *I-convergence*, Real Anal. Exchange 26 (2000/2001), 669–685.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Sakai M., The sequence selection properties of $C_p(X)$, Topology Appl. 154 (2007), 552–560.
- Scheepers M., Combinatorics of open covers I: Ramsey theory, Topology Appl. 69 (1996), 31-62.
- Scheepers M., $C_p(X)$ and Archangel'skii's α_i -spaces, Topology Appl. 45 (1998), 265–275.

Thanks for Your attention!