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A family I ⊆ P(ω) is called an ideal if

a) B ∈ I for any B ⊆ A ∈ I,

b) A ∪B ∈ I for any A,B ∈ I,

c) Fin = [ω]<ω ⊆ I,

d) ω 6∈ I.

I,J are ideals in the following.

A ⊆ P(ω) Ad = {A ⊆ ω; ω \A ∈ A}

A family F ⊆ P(ω) is called a filter if Fd is ideal.



Convergence of reals 〈xn : n ∈ ω〉

H. Cartan [1937]

x′ = limF f if f−1(V (x′)) ⊆ F

f : ω → R f(n) = xn, n ∈ ω

xn
I−→ x ≡ (∀ε > 0)(∃A ∈ I)(∀n ∈ ω)(n 6∈ A→ |xn − x| < ε)



All functions are assumed to be real-valued.



I-convergence of 〈fn : n ∈ ω〉, fn, f : X → R

M. Katětov [1968], . . . , P. Kostyrko, T. Šalát and W. Wilczyński [2000]

I-pointwise convergence fn
I−→ f

(∀x ∈ X)(∀ε > 0)(∃A ∈ I)(∀n ∈ ω)(n 6∈ A→ |fn(x)− f(x)| < ε)

P. Das and D. Chandra [2013]

I-quasinormal convergence fn
IQN−→ f

there exists 〈εn : n ∈ ω〉 I-converging to 0 such that

(∀x ∈ X)(∃A ∈ I)(∀n ∈ ω)(n 6∈ A→ |fn(x)− f(x)| < εn)

M. Balcerzak, K. Dems and A. Komisarski [2007]

I-uniform convergence fn
I-u−→ f

(∀ε > 0)(∃A ∈ I)(∀x ∈ X)(∀n ∈ ω)(n 6∈ A→ |fn(x)− f(x)| < ε)



Á Császár and M. Laczkovich [1979], Z. Bukovská [1991]

Let fn, f, n ∈ ω be functions on X. The following conditions are equivalent.

(i) fn
QN−→ f on X.

(ii) There are sets Xk ⊆ X such that X =
∞⋃
k=0

Xk and fn ⇒ f on Xk for every

k ∈ ω.

(iii) There are sets Xk ⊆ X such that X =
∞⋃
k=0

Xk, Xk ⊆ Xk+1, k ∈ ω and fn ⇒ f

on Xk for every k ∈ ω.

Moreover, if X is a topological space and fn, n ∈ ω are continuous, then (i), (ii) and
(iii) are equivalent to

(iv) There are closed sets Xk ⊆ X such that X =
∞⋃
k=0

Xk, Xk ⊆ Xk+1, k ∈ ω and

fn ⇒ f on Xk for every k ∈ ω.



B ⊆ I is a base of I if for any A ∈ I there is B ∈ B such that A ⊆ B.

cof(I) = min{|A|; A ⊆ I ∧ A is a base of I}

Theorem
The following are equivalent:

a) cof(I) = κ.

b) For any set X and for any sequence, if fn
IQN−→ f on X there are Xξ, ξ < κ such

that X =
⋃
ξ<κXξ and fn

I-u−→ f on each Xξ. Moreover, if X is a topological
space and fn, n ∈ ω are continuous, then the sets Xξ can be chosen to be
closed.

R. Filipów and M. Staniszewski [2013] κ = ℵ0

P. Das and D. Chandra [2013]

Let fn, f, n ∈ ω be functions on X. If there are Xk ⊆ X, k ∈ ω such that fn
I-u−→ f on

each Xk then fn
IQN−→ f on

⋃
k∈ω

Xk.



All spaces are assumed to be Hausdorff and infinite.



L. Bukovský, I. Recław and M. Repický [1991]

A topological space X is a QN-space (a wQN-space) if each sequence of continuous
real-valued functions converging to zero on X is (has a subsequence) converging
quasi-normally.

P. Das and D. Chandra [2013]

A topological space X is an IQN-space (an IwQN-space) if each sequence of
continuous functions converging to zero on X is (has a subsequence) converging
I-quasinormally (with respect to its enumeration).



Ideals with a pseudounion

A set B ⊆ ω is called a pseudounion of the family A ⊆ P(ω) if ω \B is infinite and
A ⊆∗ B for any A ∈ A.

Thus an ideal I is a P-ideal if and only if every countable subfamily of I has
a pseudounion belonging to I.

If a pseudounion A of I belongs to I then I = {B ⊆ ω; B ⊆∗ A}.

An ideal I has a pseudounion if and only if I is not tall.

If cof(I) < p then I has a pseudounion.

∅ × Fin has a pseudounion and cof(∅ × Fin) = d.

∅ × Fin = {A ⊆ ω × ω; (∀n ∈ ω) {m; (n,m) ∈ A} ∈ Fin}



Ideals with a pseudounion

The n-th element of A ⊆ ω is denoted eA(n).

Proposition
Let C be a pseudounion of an ideal I, A = ω \ C. Then

a) For any sequence 〈fn : n ∈ ω〉 of real-valued functions on X, if fn
I−→ f then

feA(n) → f .

b) For any sequence 〈fn : n ∈ ω〉 of real-valued functions on X, if fn
IQN−→ f then

feA(n)
QN−→ f .

Corollary
Let I ⊆ P(ω) be an ideal with a pseudounion. Then

a) Any topological space X is an IQN-space if and only if X is a QN-space.

b) Any topological space X is an IwQN-space if and only if X is a wQN-space.



Non-increasing control

P. Kostyrko, T. Šalát and W. Wilczyński [2000]

The following are equivalent.

(i) I is a P-ideal.

(ii) For every sequence of reals {xn}∞n=0, if xn
I−→ x then there is A ∈ Id such

that xeA(n) → x.

R. Filipów and M. Staniszewski [2013]

The following are equivalent.

(i) I is a P-ideal.

(ii) For every sequence of functions 〈fn : n ∈ ω〉 on a set X, if fn
IQN−→ f then there

is a sequence of reals {εn}∞n=0 converging to zero such that fn
IQN−→ f with the

control {εn}∞n=0.



P. Das and D. Chandra [2013]

Let I be a P-ideal, X =
⋃
s∈S

Xs, |S| < b.

If fn
IQN−→ f on each Xs then fn

IQN−→ f on X.

If I is a P-ideal then add(IQN-space) ≥ b.

add(IQN-space) = min{|A|; (∀A ∈ A) “A is an IQN-space” ∧ “
⋃
A is p.n. non-IQN-space”}

p.n.=perfectly normal



Archangel’skiı̌’s property (α1)
A.V. Arkhangel’skiı̆ [1972]

A topological space Y is (α1)-space if for any 〈Sn : n ∈ ω〉 of sequences converging to
some point y ∈ Y , there exists a sequence S converging to y such that Sn ⊆∗ S for all
n ∈ ω.

A topological space Y is (α1)-space if and only if for any sequence {{xn,m}∞m=0}∞n=0
of sequences converging to some point y ∈ Y , there exists an increasing sequence
{mn}∞n=0 such that {xn,m; m ≥ mn, n ∈ ω} converges to y.

M. Scheepers [1998], L. Bukovský and J. Haleš [2007], M. Sakai [2007]

Cp(X) satisfies (α1) if and only if X is a QN-space.



(I-α1)
For any continuous functions fn,m : X → R if fn,m → 0 for any n ∈ ω

then there is a sequence 〈Bn : n ∈ ω〉 of sets from I such that

(∀ε > 0)(∀x ∈ X)(∃A ∈ I)(∀n ∈ ω)(m 6∈ A ∪Bn → |fn,m(x)| < ε).

Theorem

X satisfies (I-α1) if and only if X is an IQN-space.



(I-α1)
For any continuous functions fn,m : X → R if fn,m → 0 for any n ∈ ω then there is

a sequence 〈Bn : n ∈ ω〉 of sets from I such that

(∀ε > 0)(∀x ∈ X)(∃A ∈ I)(∀n ∈ ω)(m 6∈ A ∪ Bn → |fn,m(x)| < ε).

If Cp(X) satisfies (I-α1) then X is an IQN-space.

1. fm → 0 fn,m = 2n|fm| fn,m → 0, n ∈ ω,

2. 〈Bn : n ∈ ω〉, Bn ⊆ Bn+1,
∞⋃
n=0

Bn = ω, B−1 = ∅

3. m ∈ Bn \Bn−1 εm = 2−n,

4. {m; εm ≥ 2−n} = Bn εm
I−→ 0,

5. m 6∈ B0 m ∈ Bn \Bn−1 εm = 2−n

6. x ∈ X, ε = 1 m 6∈ A ∪Bn |fm(x)| < εm.



(I-α1)
For any continuous functions fn,m : X → R if fn,m → 0 for any n ∈ ω then there is

a sequence 〈Bn : n ∈ ω〉 of sets from I such that

(∀ε > 0)(∀x ∈ X)(∃A ∈ I)(∀n ∈ ω)(m 6∈ A ∪ Bn → |fn,m(x)| < ε).

If X is an IQN-space then Cp(X) satisfies (I-α1).

1. fn,m → 0, n ∈ ω gm =
∞∑
n=0

min{2−n, |fn,m|} gm → 0, gm continuous,

2. gm
IQN−→ 0 with the control εm

I−→ 0,

I x ∈ X Ax ∈ I m 6∈ Ax → gm(x) < εm,

I 〈Bn : n ∈ ω〉 m 6∈ Bn → εm < 2−n,

3. m 6∈ Ax ∪Bn gm(x) < 2−n |fn,m(x)| < 2−n,

4. x ∈ X, ε > 0, k0 : 2−k0 < ε, m0 (∀k < k0)(∀m > m0) |fk,m(x)| < ε.



L. Bukovský and J. Haleš [2007] (α0), (α∗0)

(I-α0) For any continuous functions fn,m, f : X → R such that fn,m → f for

any n ∈ ω there is a sequence {nm}∞m=0 I-divergent to∞ such that fnm,m
I−→ f .

(I-α∗
0)

For any continuous functions fn,m, fn, f : X → R such that fn,m → fn

for any n ∈ ω and fn → f there is a sequence {nm}∞m=0 such that fnm,m
I−→ f .

Theorem

X satisfies (I-α0) ≡ X satisfies (I-α∗0) ≡ X is an IQN-space



Coverings, two parameters



L. Bukovský and J. Haleš [2007], M. Sakai [2007] α1(Γ,Γ), β1, β2, β3, β∗1 , β∗2

A γ-cover 〈Un : n ∈ ω〉 is fully shrinkable if there is a closed γ-cover 〈Fn : n ∈ ω〉 such
that Fn ⊆ Un for each n ∈ ω.

M. Sakai [2007]
Every open γ-cover 〈Un : n ∈ ω〉 of a perfectly normal space X is fully shrinkable if
and only if X is a σ-set.

P. Das [2013]
A cover 〈Un : n ∈ ω〉 of X is an I-γ-cover if {n ∈ ω; x 6∈ Un} ∈ I for each x ∈ X.

I-Γ

An infinite coverA of X is a γ-cover if every x ∈ X lies in all but finitely many members ofA. (J. Gerlits and
Zs. Nagy [1982]) Γ

A topological space X is a σ-set if every Fσ subset of X is a Gδ set in X.



Theorem
The following are equivalent.

(i) X is an IQN-space.

(ii) For every sequence 〈{Un,m; m ∈ ω} : n ∈ ω〉 of fully shrinkable open γ-covers
there is a sequence {nm}∞m=0 I-divergent to∞ such that {Unm,m; m ∈ ω} is
an I-γ-cover of X.

(iii) For every sequence 〈{Un,m; m ∈ ω} : n ∈ ω〉 of fully shrinkable open γ-covers
there is a sequence 〈Bn : n ∈ ω〉 of sets from I such that

(∀x ∈ X)(∃A ∈ I)(∀n ∈ ω)(m 6∈ A ∪Bn → x ∈ Un,m).



Proposition
Let I ⊆ P(ω) be an ideal with a pseudounion C, A = ω \ C. Then for any I-γ-cover
〈Un : n ∈ ω〉, the sequence 〈UeA(n) : n ∈ ω〉 is a γ-cover.

Corollary
Let I,J ⊆ P(ω) be ideals with pseudounions. Then any topological space X is
an S1(I-Γ,J -Γ)-space if and only if X is an S1(Γ,Γ)-space.

LetA, B be families of covers of X. A topological space X possesses the property S1(A,B) if for every

sequence 〈Un : n ∈ ω〉 of covers fromA there exist sets Un ∈ Un, n ∈ ω such that {Un; n ∈ ω} ∈ B.

(M. Scheepers [1996])



P. Das and D. Chandra [2014]

A topological space X is an (I,J )wQN-space if each sequence of continuous
functions I-converging to zero on X has a subsequence converging J -quasinormally
(with respect to its enumeration).

Corollary
Let I,J ⊆ P(ω) be ideals with pseudounions. Then any topological space X is
an (I,J )wQN-space if and only if X is a wQN-space.



Proposition
Any γ-set is an S1(I-Γ,Γ)-space.

Proposition
If X is an S1(I-Γ,Γ)-space then X is an (I,Fin)wQN-space.

Corollary
Any γ-set is an S1(I-Γ,J -Γ)-space and an (I,J )wQN-space.

A coverA of X is an ω-cover if for any finite subset F of X there is A ∈ A such that F ⊆ A. (J. Gerlits and
Zs. Nagy [1982])

A topological space X is a γ-set if any open ω-cover of X contains γ-subcover. (J. Gerlits and Zs. Nagy [1982])
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Bukovský L. and Haleš J., QN-spaces, wQN-spaces and covering properties, Topology Appl. 154 (2007),
848–858.
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